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Abstract
A conservation equation for the scalar wave equation is derived from two
linearly independent solutions. In the one-dimensional limit the conservation
equation yields a previously known invariant. The continuity equation derived
for a complex disturbance is shown to yield an equivalent result. The obtention
of the second independent solution is discussed using two different schemes that
lead either to orthogonal trajectories or to derivative fields. The complementary
fields may be visualized as out-of-phase fields where a negative-valued density
is interpreted in terms of the leading or lagging field. These results are compared
with the usual definition of energy density and flow for scalar waves. In the
monochromatic plane wave case, the averages of all the proposed densities
and flows converge to the same result. The physical meaning of the different
approaches is discussed.

PACS numbers: 03.50.Kk, 46.40.Cd, 42.25.Bs

1. Introduction

The existence of conserved quantities is of fundamental importance in almost every field
of physics. Under appropriate circumstances, conserved quantities become invariants of
motion. A wide variety of mathematical methods have been developed in order to obtain
invariants that span from elementary algebraic methods to symmetry considerations evaluated
through symplectic group transformations or Noether’s theorem [1]. An orthogonal functions
invariant, closely related to the Ermakov–Lewis invariant, has been recently derived for the
classical time-dependent harmonic oscillator (TDHO) equation [2]. A quantum version of this
constant of motion may be used, for example, to solve the one-dimensional TDHO Schrödinger
equation [3].

In the present paper, the orthogonal functions derivation is extended to the (3 + 1)-
dimensional scalar wave equation. For systems with one degree of freedom, the assessed
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quantity becomes the previously known invariant as shown in section 2. In the case of a
complex perturbation, exposed in section 3, the conserved quantity and its flow are shown to
be equivalent to their counterparts in the previous real orthogonal functions derivation. These
expressions have been studied before in the context of the Klein–Gordon equation [4]. Due to
the lack of a positive definite density and thus the impossibility of representing a probability
density, this continuity equation has not received much attention. Nonetheless, this charge-like
density will be shown to emanate in the presence of two out-of-phase fields. This interpretation
is plausible for wave phenomena where the disturbance comes from the imbalance between
two forms of energy [5]. The complementary field or linearly independent function is then
evaluated from a given solution using two different procedures. The first one, described in
section 4.1, proposes a generalization of the linearly independent solution obtained in the
one-dimensional case. The second procedure, described in section 4.2, evaluates the temporal
derivative of the field in order to produce a second solution. In section 5, the density and
flow obtained from these results are compared with the positive definite density conservation
equation usually invoked to evaluate the energy content of a wave fulfilling a scalar second-
order differential equation. A summary of results together with the conclusions is presented
in the last section.

2. Complementary functions procedure

In order to obtain a continuity equation of the form ∇ · J+(∂/∂t)ρ = 0, consider the following
procedure. The starting point is the scalar wave equation

∇2ψ(r, t) − 1

v2

∂2ψ(r, t)
∂t2

= 0 (1)

where the scalar ψ represents the disturbance and v is the velocity of propagation. Allow
for two real linearly independent solutions of the wave equation to be ψ1(r, t) and ψ2(r, t)
(the notation that exhibits the space and time dependence (r, t) is dropped in the derivation
and shown explicitly only when needed). Perform the product of ψ2 and the wave equation
for ψ1:

ψ2

(
∇2ψ1 − 1

v2

∂2ψ1

∂t2

)
= 0.

Calculate the product inverting the solutions and evaluate their difference:

(ψ2∇2ψ1 − ψ1∇2ψ2) +
1

v2

(
ψ1

∂2ψ2

∂t2
− ψ2

∂2ψ1

∂t2

)
= 0.

This equation, with the aid of Green’s theorem, may be written as

∇ · (ψ2∇ψ1 − ψ1∇ψ2) +
1

v2

∂

∂t

(
ψ1

∂ψ2

∂t
− ψ2

∂ψ1

∂t

)
= 0 (2)

where the assessed quantity ψρ and its corresponding flux � ψρ are defined as

ψρ ≡
(

ψ1
∂ψ2

∂t
− ψ2

∂ψ1

∂t

)
� ψρ ≡ (ψ2∇ψ1 − ψ1∇ψ2). (3)

Provided that the medium does not exhibit dispersion but is allowed to be inhomogeneous,
the above expression may be written as a continuity equation

∇ · S +
∂

∂t
E = 0 (4)
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where the density of the conserved quantity and its associated flux are

E = 1

v2(r)

(
ψ1

∂ψ2

∂t
− ψ2

∂ψ1

∂t

)
S = (ψ2∇ψ1 − ψ1∇ψ2). (5)

These definitions may be scaled by an arbitrary constant; in particular, a factor of 1/2 will
be included when these quantities are compared with the usual energy and momentum flow
variables. If the medium were homogeneous but with a time-dependent velocity, a continuity
equation may also be obtained,

∇ · [v2(t)(� ψρ)] +
∂

∂t
(ψρ) = 0 (6)

provided that the density and flux are now defined by [E]disp = ψρ and [S]disp = v2(t) (� ψρ),
respectively. In a homogeneous dispersionless medium either definition may, of course, be
used. The quantities in (3) may be written as

ψρ = ψ2
1

∂

∂t

(
ψ2

ψ1

)
= −ψ2

2
∂

∂t

(
ψ1

ψ2

)
� ψρ = −ψ2

1 ∇
(

ψ2

ψ1

)
so that any one solution may be readily expressed in terms of the other function and the density,
i.e. ψ2 = ψ1

∫ (
ψρ/ψ

2
1

)
dt . Linear independence of the solutions in the temporal variable is

ensured if the scalar field density does not vanish, ψρ �= 0. Whereas linear independence in
the spatial variables is obtained if the vector field � ψρ �= 0. The wave equation ensures that if
the two fields are linearly independent in the temporal variable then they are also independent
in the spatial variables. The only trivial exception being if the velocity of propagation is zero.
Hereafter, we shall refer to these linearly independent solutions in the temporal and spatial
variables as complementary fields.

Orthogonality, in the analytic functions sense, of the linearly independent solutions
ψ1(r, t) and ψ2(r, t) over the interval [a, b] with respect to the weight function w may
be achieved through Schmidt’s method. Given the function ψ2(r, t), the orthogonal solution
in the time variable ψ1⊥(r, t) is given by ψ1⊥ = ψ1 − λ12ψ2, where

λ12 =
∫ b

a
ψ2ψ1w dt∫ b

a
ψ2ψ2w dt

.

The fields ψ1⊥(r, t) and ψ2(r, t) then obey the relationship
∫ b

a
ψ1⊥ψ2w dt = 0.

Biorthonormal systems of this sort have been used to identify the radiative and nonradiative
parts of a wave field [6]. If the density is evaluated using the linearly independent solution ψ1

albeit not necessarily orthogonal to ψ2, then

ψρ = −ψ2
2

∂

∂t

(
ψ1

ψ2

)
= −ψ2

2
∂

∂t

(
ψ1⊥ + λ12ψ2

ψ2

)
= −ψ2

2
∂

∂t

(
ψ1⊥
ψ2

)
.

Therefore, the contribution of the non-orthogonal component is zero and thus the non-
vanishing contribution to the density comes from the orthogonal fields solutions. An analogous
procedure may be performed in the spatial domain in order to derive the orthogonal spatial
field. The non-zero contribution to the flow is again obtained from the spatially orthogonal
field solution. The complementary field function is, of course, not unique since any linearly
dependent function may be added without altering the density function ψρ . In addition, as is
well known, a continuity equation admits a density that is defined up to a time-independent
scalar E ′ = E + G(r) and a flow with an arbitrary divergence-free field S′ = S + ∇ × G.
Furthermore, for any twice differentiable vector field G, a modified density E ′ = E + ∇ · G
and flux S′ = S − ∂G/∂t are also admissible [7].



4110 M Fernández Guasti

2.1. Systems with restricted degrees of freedom

2.1.1. Spatially harmonic field. In the particular case where the field functions are harmonic
in the spatial domain

∇2ψ(r, t) = −k2(t)ψ(r, t) (7)

where the wave vector magnitude k2(t) is spatially constant but has an arbitrary time
dependence. The complementary functions procedure applied to (7) yields ∇ · (� ψρ) = 0.
The continuity equation (2) then leads to an invariant

ψρ → Q = ψ1
∂ψ2

∂t
− ψ2

∂ψ1

∂t
. (8)

Substitution of the spatial harmonic dependence (7) in the wave equation (1) gives

k2(t)ψ(r, t) +
1

v2(t)

∂2ψ(r, t)
∂t2

= 0. (9)

The standard separation of variables ψ(r, t) = ψsp(r)ψt (t) then yields decoupled differential
equations for the spatial and temporal behaviour. The temporal equation is equal to the time-
dependent oscillator equation, with time-dependent parameter given by �2(t) = k2(t)v2(t).
Therefore, the harmonic spatial field restriction, as is well known, describes a continuum
problem that fulfils a temporal differential equation identical to that obtained from the discrete
non-propagating problem of a single particle in a time-dependent potential. The density
obtained in the different formalisms under this restriction will be discussed in the following
sections.

Given one field solution, say ψt1(t), the complementary field may be readily obtained
from the invariant relationship (8) in this one-dimensional case,

ψt2(t) = ψt1(t)

∫
Q

ψ2
t1(t)

dt.

This is the common way of obtaining, with the aid of the Wronskian Q, a linearly
independent solution in ordinary second-order differential equations [8]. In terms of
real amplitude ‘a’ and phase ‘s’ variables, the one-dimensional exact invariant is Q =
a2(t) ds(t)/dt . The Ermakov–Lewis exact invariant may be derived from the general version
of this constant of motion [2]. Given a solution of the form ψ1t (t) = a(t) cos[s(t)], the
linearly independent solution is

ψt2(t) = a(t) cos[s(t)]
∫

a2(t) ds(t)/dt

a2(t) cos2[s(t)]
dt = a(t) sin[s(t)]. (10)

2.1.2. Monochromatic field. A field with harmonic time dependence

∂2ψ

∂t2
= −ω2

0ψ (11)

transforms the wave equation into the time-independent diffusion (or Helmholtz) equation

∇2ψ(r) = − ω2
0

v2(r)
ψ(r)

where the medium inhomogeneity κ2(r) = ω2
0

/
v2(r) is now constant in time but has an

arbitrary spatial dependence. The solution in amplitude and phase variables is given by

ψ1(r, t) = a(r) cos(φ(r) − ω0t + ϕ0) (12)
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where ϕ0 is a constant phase. Since the continuity equation then reads ∇ · (ψ2∇ψ1−ψ1∇ψ2) =
0, the obtention of the linearly independent solution is not straightforward from this result.
Nonetheless, the harmonic time dependence yields a time-independent density and thus (8) is
fulfilled. The linearly independent solution may then be proposed to be

ψ2(r, t) = a(r) sin(φ(r) − ω0t). (13)

The density and flow are then

ψρ = −a2(r)ω0 � ψρ = −a2(r)∇φ(r). (14)

According to this expression, the flow is finite in any direction where the wave vector has a
non-vanishing projection. Note that the general solution (12) and the linearly independent
solution (13) are being used to obtain the density and its corresponding flow. The usual
sequence in ordinary differential equations is the opposite where the general solution is
obtained from a particular solution with the help of a constant density. In an unrestricted
system, the density becomes in general spatially and time dependent. The problem then will
be to find an independent solution in order to evaluate the density as we shall see in section 4.
The continuity equation for a monochromatic field in amplitude and phase variables is from
(4) and (14),

∇ · S = ∇ · [a2(r)∇φ(r)] = 0 (15)

since the density is time independent. The paraxial approximation of this expression has been
used to retrieve the phase from intensity measurements in optical testing [9] and other inverse
source problems [10]. The one-dimensional restriction, say in the z direction, again reduces to
an invariant of the form Q = a2(z)(∂/∂z)φ(z). This invariant allows for the decoupling of the
amplitude and phase equations leading to an Ermakov-type equation. The differential equation
is once more formally equivalent to the time-dependent harmonic oscillator equation with the
time variable replaced by the spatial coordinate. This equation describes, for example, the
propagation of an electromagnetic wave at normal incidence in an arbitrary inhomogeneous
medium [11].

3. Complex disturbance

Permit the disturbance to be complex ψ → ψ̃ . The most general solution has the form

ψ̃g = (b1rψ1 + b2rψ2) + (b1iψ1 + b2iψ2)i

where the coefficients b1r , b2r , b1i , b2i are constant. The complementary field is obtained from
the substitutions ψ1 → ψ2 and ψ2 → ψ1, where the constant coefficients may, in general, be
different from the previous ones,

ψ̃(comp)
g = (bc1rψ1 + bc2rψ2) + (bc1iψ1 + bc2iψ2)i.

It may be worked out that the density ψ̃g(∂/∂t)ψ̃
(comp)
g − ψ̃

(comp)
g (∂/∂t)ψ̃g is proportional

to ψ1(∂/∂t)ψ2 − ψ2(∂/∂t)ψ1, the proportionality constant being

(bc2i − ibc2r )(b1i − ib1r ) − (bc1i − ibc1r )(b2i − ib2r ).

Equivalent results are obtained in the spatial domain for the flow. It may be seen from this
result that in the complex case, just as in the real disturbance derivation, there is no contribution
to the density or flow for complementary field terms that are linearly dependent on the reference
field. For example, if only b1r is different from zero in the ψ̃g solution, the only non-vanishing
contribution comes from the terms involving ψ2 in the complementary solution ψ̃

(comp)
g , i.e.

the coefficients bc2i , bc2r . It is therefore sufficient, without loss of generality, to introduce
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linearly independent complex solutions; let the choice be b1r = bc1r and b2i = −bc2i while
all other constants are set to zero. The complex complementary fields are then

ψ̃ = b1rψ1 + b2iψ2i ψ̃(comp) = b1rψ1 − b2iψ2i. (16)

These two solutions are linearly independent provided that b1r and b2i are non-zero; that is,
the solutions must neither be purely real nor purely imaginary. To wit, the density

ψ̃ρ = 2ib1rb2i

(
ψ1

∂ψ2

∂t
− ψ2

∂ψ1

∂t

)
is finite since ψ1, ψ2 are linearly independent solutions. There is an alternative procedure that
may be employed to obtain this result if the complementary functions procedure used to derive
a continuity equation is recreated using the pair ψ̃∗ and ψ̃ rather than the linearly independent
real solutions ψ1, ψ2. The continuity equation then reads

∇ · (ψ̃∇ψ̃∗ − ψ̃∗∇ψ̃) +
1

v2

∂

∂t

(
ψ̃∗ ∂ψ̃

∂t
− ψ̃

∂ψ̃∗

∂t

)
= 0 (17)

where the assessed quantity ψρ and its corresponding flux � ψρ are now defined by

ψρ = 1

2i

(
ψ̃∗ ∂ψ̃

∂t
− ψ̃

∂ψ̃∗

∂t

)
� ψρ = 1

2i
(ψ̃∇ψ̃∗ − ψ̃∗∇ψ̃). (18)

The factors 1/2i have been introduced in order to obtain real expressions for these
quantities. The assessed quantity and its flow are equal either for the real linearly independent
solutions (3) or for the complex solution

ψ̃ = ψ1 + ψ2i (19)

together with its concomitant definitions of density and flow (18) as may be seen from direct
substitution. The constants b1r , b2i have been set to one since they may always be included
within the solutions. This result could be anticipated from (16) since the constants were
chosen so that the complementary function is the complex conjugate of the reference function
ψ̃(comp) = ψ̃∗. The expression for the density in terms of complex conjugate fields (18) is
encountered when dealing with the Klein–Gordon Schrödinger equation [12]. Nonetheless,
as we have mentioned, it is commonly dismissed because it is not positive definite. This fact,
together with the lack of relativistic invariance of the positive definite density (44), led Dirac
to search for a different wave equation [4]. So far, according to the present results, it is clear
that this density corresponds to a quantity assessed between two complementary fields. The
relative phase between these fields, as we shall discuss in the following section, defines the
sign of this quantity.

In harmonic time-dependent phenomena, evaluation of a product involving the function
and its conjugate is often used as a mathematical technique in order to perform an average
[13]. The above derivation with a complex field may be misleading because it may be thought
that the complex conjugate expressions involve some sort of averaging. However, in the
complementary functions procedure with real linearly independent solutions no average was
performed at all. Since the evaluation of the density and flow (18) with the complex function
(19) is entirely equivalent to the complementary real functions method, it does not imply any
sort of averaging.

4. Complementary field evaluation

In the case of a disturbance with arbitrary spatial and time dependence, the independent
solution cannot be readily obtained as in second-order differential equations in one variable.
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In this general case, given one solution, there are different possibilities that may be pursued in
order to obtain a linearly independent solution. Two such possibilities are explored hereafter.
In the first subsection, a generalization of the amplitude and phase representation is invoked in
order to obtain a linearly independent solution. This proposal generates a flow that is always
orthogonal, in the vector sense, to the wave front even in the time-dependent case. In the
second subsection, the time derivative of the wave equation is used to produce the second
solution. Under certain circumstances the resulting density becomes positive definite. An
asset of this approach is that the one dimensional restriction yields a density that is equal to
the energy of the discrete system.

4.1. Orthogonal trajectories

The general solution of the wave equation in terms of real amplitude and phase variables is

ψ1(r, t) = a(r, t) cos(s(r, t) + ϕ0) (20)

where ϕ0 is a constant phase. Following a generalization of the previous results, i.e. (10) and
(13), the complementary field is proposed to be

ψ
(⊥)
2 (r, t) = ∓b⊥a(r, t) sin(s(r, t) + ϕ0). (21)

The complementary field is then a function that is 90◦ out of phase with respect to the original
field. These fields may have arbitrary multiplicative constants; here, the coefficient of ψ

(⊥)
2

has been set to b⊥ whereas the coefficient of ψ1 has been normalized to one without loss of
generality. The complex solution (19) in terms of amplitude and phase variables from (20)
and (21) is

ψ̃(⊥) = a(r, t) cos(s(r, t)) ∓ b⊥a(r, t) sin(s(r, t))i

and its polar representation is

ψ̃(⊥) = a(r, t)
[
1 +

(
b2

⊥ − 1
)

sin2(s(r, t))
] 1

2 exp{∓i arctan[b⊥ tan(s(r, t))]} (22)

where the constant phase has been set to zero. If the complementary field constant coefficient
is normalized, b⊥ = 1, the polar expression for the complex field is simply

ψ̃(⊥) = a(r, t) e∓i(s(r,t)+ϕ0). (23)

The terms involving temporal derivatives of the conserved quantity (3) are

ψ1
∂ψ

(⊥)
2

∂t
=

[
∓b⊥a2 ∂s

∂t
cos2(s) ∓ b⊥a

∂a

∂t
sin(s) cos(s)

]
and

ψ
(⊥)
2

∂ψ1

∂t
=

[
±b⊥a2 ∂s

∂t
sin2(s) ∓ b⊥a

∂a

∂t
sin(s) cos(s)

]
so that their difference yields the density

ψ(⊥)
ρ = ∓b⊥a2(r, t)

∂s(r, t)
∂t

. (24)

If there is no complementary field, i.e. b⊥ = 0, the density is obviously zero. It is therefore
crucial to have a finite complementary field in order to obtain a non-trivial continuity equation.
On the other hand, whether this quantity is positive or negative depends on whether the
complementary field leads or lags (by 90◦) the reference field (or for that matter, which field is
taken as the reference). This issue has been discussed at length in a previous communication in
the one-dimensional case [14]. The main drawback of a density which is not positive definite,
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is that it may be inadequate to represent some variables such as the probability density in
certain quantum mechanical problems or the energy density in classical waves. However, the
present interpretation shows that the sign of the density relies on whether the complementary
field leads or lags the reference field and as such, it may well be an appropriate variable for
physical quantities where the equilibrium reference value can be arbitrarily set.

The terms with spatial derivatives in the complementary fields flow (3) follow an analogous
derivation

ψ
(⊥)
2 ∇ψ1 = ∓b⊥[−a2 sin2(s)∇s + a∇a sin(s) cos(s)]

and

ψ1∇ψ
(⊥)
2 = ∓b⊥[a2 cos2(s)∇s + a∇a sin(s) cos(s)]

so that

S⊥ = �ψ(⊥)
ρ = ±b⊥a2(r, t)∇s(r, t). (25)

The spatially constant phase surfaces define the wave front. Since the flow defined above
is zero for a spatially constant phase, the flow S⊥ is then perpendicular, or orthogonal in the
vector sense, to the wave front even in the time-dependent case. To wit, orthogonal trajectories
are ensured if S · (∇ × S) = 0 [15]. Evaluating this expression for the complementary fields
flow yields

S⊥ · (∇ × S⊥) = b2
⊥(a2∇s) · (∇ × (a2∇s))

but ∇ × (a2∇s) = ∇a2 × ∇s. Thus

S⊥ · (∇ × S⊥) = a2∇s · (∇a2 × ∇s) = 0 (26)

since the vector ∇a2 × ∇s is orthogonal to ∇s. For a monochromatic wave, the density
(24) and flow (25) are time-independent although no averaging process has taken place in the
derivation. For a plane wave, the phase spatial dependence is φ(r) = k · r, where the wave
vector k is constant. The assessed quantities are then also spatially constant,

ψ(⊥)
ρ = b⊥a2

0ω0 S⊥ = b⊥a2
0k (27)

where the upper sign of the expressions has been taken. Therefore, plane wave propagation
yields a constant density and flow in this formalism even without performing any averaging.
We shall return to this point in the following subsection.

Regarding the parity of these quantities, the density ψ(⊥)
ρ is an odd function of time

provided that the constant b⊥ remains invariant under time reversal. This result is not surprising
since the field that lags by 90◦ becomes a leading field by 90◦ under the time transformation.
Under space inversion, ψ(⊥)

ρ remains unaltered. On the other hand, the flow S⊥ is invariant
under time reversal and odd under space inversion.

Introducing the complex disturbance (23) in the scalar wave equation yields

∇2a − (∇s · ∇s)a − 1

v2

[
∂2a

∂t2
−

(
∂s

∂t

)2

a

]
= 0 (28)

and

a∇2s + 2(∇s · ∇)a − 1

v2

[
a
∂2s

∂t2
+ 2

∂s

∂t

∂a

∂t

]
= 0. (29)

An amplitude a and frequency ω ≡ ṡ time-independent version of these results is often
used in the optical scalar theory [16]. The latter equation, provided that the amplitude is finite,
may be written as

∇ · (a2∇s) − 1

v2

[
∂

∂t

(
a2 ∂s

∂t

)]
= 0. (30)
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However, this equation is precisely the conservation equation previously derived (4) together
with (24) and (25). Therefore, the continuity equation arising from the complementary
orthogonal fields is also obtained when a complex disturbance of the form (23) is introduced
in the wave equation. For monochromatic electromagnetic fields with linear polarization,
this procedure has been shown to yield equivalent results to those obtained from Poynting’s
theorem [17].

4.2. Derivative field

A second possibility for obtaining an independent solution is the following: in a dispersionless
medium, the time derivative of the wave equation is

∇2 ∂ψ

∂t
− 1

v2

∂2

∂t2

(
∂ψ

∂t

)
= 0. (31)

Since the function ∂ψ/∂t also satisfies a wave equation, a linearly independent solution may
be obtained from the identification ψ1 → ∂ψ/∂t and ψ2 → ψ . The complementary fields
density and flow from (3) are then

ψ(DF)
ρ =

(
∂ψ

∂t

)2

− ψ
∂2ψ

∂t2
� ψ(DF)

ρ = ψ∇
(

∂ψ

∂t

)
− ∂ψ

∂t
∇ψ. (32)

These expressions may be economically written as

ψ(DF)
ρ = −ψ2 ∂2 ln ψ

∂t2
� ψ(DF)

ρ = ψ2∇
(

∂ ln ψ

∂t

)
. (33)

From these results it follows that the density ψ(DF)
ρ remains invariant under time reversal

and space inversion. On the other hand, the flow � ψ(DF)
ρ is an odd function under time

reversal and space inversion. In order to describe the density and flow in amplitude and phase
variables, let the solution be written as

ψ(r, t) = ψ2(r, t) = a(r, t) sin(s(r, t)). (34)

The first term in the density (32) is(
∂ψ

∂t

)2

=
(

∂a

∂t

)2

sin2 s + a2

(
∂s

∂t

)2

cos2 s + a
∂a

∂t

∂s

∂t
sin(2s) (35)

whereas the second term is

ψ
∂2ψ

∂t2
=

(
a
∂2a

∂t2
− a2

(
∂s

∂t

)2
)

sin2 s +

(
a
∂a

∂t

∂s

∂t
+

1

2
a2 ∂2s

∂t2

)
sin(2s). (36)

The density is thus

ψ(DF)
ρ = a2

[(
∂s

∂t

)2

− ∂2 ln a

∂t2
sin2 s − 1

2

∂2s

∂t2
sin(2s)

]
(37)

and the flow is

� ψ(DF)
ρ = a2

[
−∇s

∂s

∂t
+ ∇

(
∂ ln a

∂t

)
sin2 s +

1

2
∇

(
∂s

∂t

)
sin(2s)

]
. (38)

The complex representations of these quantities are obtained from (18) together with

ψ̃ = ∂ψ

∂t
+ ψ i. (39)
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4.2.1. Positive definite density. The density ψρ is not positive definite as has been mentioned
before. However, if the field is harmonic in time (11), the density that arises from a
complementary derivative field (32) becomes positive definite since

ψ(DF)
ρ (harmonic) =

(
∂ψ

∂t

)2

+ ω2
0ψ

2. (40)

Therefore, if the field is decomposed in Fourier components, the contribution of
each monochromatic component has a positive definite density in this scheme. In the
monochromatic case, the density (and flow) defined from the orthogonal trajectories (24)
or the derivative function (37) methods is the same ψ(DF)

ρ = ψ(⊥)
ρ provided that b⊥ = ω0. In

either scheme these quantities are constant in time without having performed any average. The
reason lies in the fact that, in both cases, two out-of-phase fields are being invoked. In order
to elucidate this point recall, for example, the time-independent one-dimensional harmonic
oscillator illustrated by a simple pendulum or a spring. The total time-independent energy
arises from two time-dependent out-of-phase functions, namely, the kinetic and potential
energy. This result is obtained in the present formalism from the derivative field density (32)
by letting ψ represent the displacement of the particle; the complementary field ψ1 = dψ/dt

then stands for the velocity of the particle. The force acting on a mass m executing harmonic
motion in one dimension is F = mψ̈ = −κψ , where κ is the restoring constant. This
condition corresponds to the time harmonic field restriction (11) in the continuum case. Thus
the invariant density ψ(DF)

ρ = ψ̇2 + (κ/m)ψ2 scaled by a factor of m/2 is, in this example,
equal to the total energy of the system. In contrast, the energy density usually associated with
a scalar wave field (44) does not yield the energy of the discrete harmonic oscillator system in
the monochromatic one-dimensional limit.

A second example of a positive definite density is the propagation of a Gaussian pulse.
Consider a plane carrier wave with Gaussian temporal envelope

ψ(Gauss.) = a0 exp


−

(
φ(r)
ω0

− t
)2

b2
0


 sin[φ(r) − ω0t] (41)

where b0 is a constant proportional to the pulse width. The density evaluated from (32) is

ψ(DF)
ρ (Gauss.) = a2

0

b2
0

exp


−

2
(

φ(r)
ω0

− t
)2

b2
0


(

2 sin2[φ(r) − ω0t] + b2
0ω

2
0

)
(42)

which is again a positive definite quantity. Note that an arbitrary transverse spatial amplitude
dependence does not alter the positive definite nature of this result since only temporal partial
derivatives are involved in the density definition.

5. Comparison with energy density and flow

The continuity equation associated with energy conservation in classical scalar waves or
a positive definite probability density in second-order differential equations in quantum
mechanics may be derived in a variety of ways. One such procedure is to multiply the
dispersionless wave equation by the temporal derivative of the wavefunction [18]. Upon
rearrangement of the terms, the conservation equation reads

∂

∂t

[
1

2

1

v2

(
∂ψ

∂t

)2

+
1

2
∇ψ · ∇ψ

]
+ ∇ ·

(
−∂ψ

∂t
∇ψ

)
= 0. (43)
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Thus a density and a flux are defined as

Ed = 1

2

1

v2

(
∂ψ

∂t

)2

︸ ︷︷ ︸
kinetic

+
1

2
∇ψ · ∇ψ︸ ︷︷ ︸
potential

Sd = −∂ψ

∂t
∇ψ. (44)

These variables are usually translated into quantities with energy and energy flow units
through multiplication by the adequate quantity. For example, a mechanical wave where the
perturbation corresponds to a displacement would involve a factor ρv2, where ρ is the mass
density. It is customary to associate the two terms in the energy density as the sum of kinetic
and potential energy [19].

The purpose in this section is to compare these expressions with their counterparts obtained
from the complementary fields approach. The first issue that has already been pointed out is
that whereas the density Ed is positive definite, the densities that arise from the complementary
fields are not positive definite but under restricted circumstances. Nonetheless, it should be
mentioned that the density Ed also presents certain drawbacks, for example under Lorentz
transformations where it does not lead to a relativistically invariant definition of the integrated
probability [20].

The complementary field evaluated with the derivative field yields a density and flow that
have the same spatial and temporal parities as the energy density and flow. Namely Ed and
ψ(DF)

ρ are even under time and space inversion whereas Sd and � ψ(DF)
ρ are odd in either case.

For this reason, we shall compare these quantities hereafter. The energy density in terms of
the amplitude and phase variables (20) is given by

Ed = 1

2
a2

(
1

v2

(
∂s

∂t

)2

+ ∇s · ∇s

)
sin2 s +

1

2

(
1

v2

(
∂a

∂t

)2

+ ∇a · ∇a

)
cos2 s

− a

2

(
1

v2

∂a

∂t

∂s

∂t
+ ∇s · ∇a

)
sin(2s). (45)

The corresponding flow is

Sd =
(

−a2∇s
∂s

∂t
sin2 s − ∇a

∂a

∂t
cos2 s +

a

2

(
∇s

∂a

∂t
+ ∇a

∂s

∂t

)
sin(2s)

)
. (46)

The density ψ(DF)
ρ and flow � ψ(DF)

ρ given by equations (37) and (38) respectively have a
somewhat similar structure. Nonetheless, the (DF) quantities involve terms that do not exhibit
a phase-dependent oscillation as well as second-order derivatives. In the particular case of
a plane wave, since the amplitude is constant and the phase is linear in the time and space
variables, the energy density and flow are then

Ed = 1

2
a2

0

(
1

v2
ω2

0 + k · k
)

sin2(k · r − ωt) Sd = a2
0ω0 sin2(k · r − ωt)k (47)

so that even in this particular condition they are time dependent. In contrast, the complementary
field quantities evaluated with the derivative field yield time-independent results

ψ(DF)
ρ = a2

0ω
2
0 � ψ(DF)

ρ = a2
0ω0k (48)

just as in the orthogonal trajectories scheme (27). The underlying reason for this state of
affairs is that the kinetic and potential energy terms in (44) correspond to the sum of in phase
fields whereas the terms in the complementary fields density (32) correspond to the addition
of out-of-phase fields.
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5.1. Averages

Rather than the instantaneous time-dependent energy density and flow what is frequently
measured is the average of these quantities. If the change of the amplitude and the
phase temporal derivative are negligible over a period, averages may be performed over
the fast varying trigonometric functions. Nonetheless, it should be stressed that this
approximation may no longer be valid for ultra-short pulses such as those presently attainable
in the femtosecond regime in the optical region [21]. A constant time derivative of the
phase within a period is approximated by s(r, t) = φ(r) − ωt , where ω is constant
over a period. The average per unit time of the squared trigonometric functions is thus
ω/2π

∫ 2π/ω

0 sin2(φ(r) − ωt) dt = 1/2. The average energy density from (45) is then

〈Ed〉 = 1

4

(
1

v2
a2

(
∂s

∂t

)2

+
1

v2

(
∂a

∂t

)2

+ a2∇s · ∇s + ∇a · ∇a

)
(49)

whereas the average flow is

〈Sd〉 = −1

2

(
a2∇s

∂s

∂t
+ ∇a

∂a

∂t

)
. (50)

These expressions are often used in a scalar representation of electromagnetic fields
[15]. The first and second pairs of terms in (49) are associated with electric and magnetic
energy densities, respectively. Radiometry in the Walther, Marchand and Wolf (WMW)
formulation [22] also uses these definitions of density and flow that in terms of a complex
scalar ψ̃ = a exp(is) are given by [23]

〈Ed〉 = 1

2
∇ψ̃ · ∇ψ̃∗ +

1

2

1

v2

∂ψ̃

∂t

∂ψ̃∗

∂t
〈Sd〉 = −1

2

(
∂ψ̃

∂t
∇ψ̃∗ +

∂ψ̃∗

∂t
∇ψ̃

)
. (51)

These results should be contrasted with the complementary fields complex representation (18)
where no averaging is being performed. On the other hand, the average of the complementary
fields density using the derivative field for the linearly independent solution (37) reduces to

〈
ψ(DF)

ρ

〉 = a2

[(
∂s

∂t

)2

− 1

2

∂2 ln a

∂t2

]
= a2

(
∂s

∂t

)2

+
1

2

(
∂a

∂t

)2

− 1

2
a
∂2a

∂t2
(52)

and the average flow from (38) is〈
� ψ(DF)

ρ

〉 = −a2

[
∇s

∂s

∂t
− 1

2
∇

(
∂ ln a

∂t

)]
= −a2∇s

∂s

∂t
− 1

2
∇a

∂a

∂t
+

1

2
a∇

(
∂a

∂t

)
. (53)

The WMW approach employs the spectral flow vector as a starting point for calculating
all radiometric quantities. The spectral flow vector is defined as the flow vector (51) restricted
to a monochromatic field. Since the monochromatic condition requests a time-independent
amplitude, the spectral flow vector in the WMW (50) and the complementary fields (53)
formalisms become identical but for a factor of 1/2 that should be included in the latter
definition. However, the average energy density (49) is not equal to the average of the
complementary fields density (52) in the monochromatic case. Nonetheless, both quantities
only differ by a time-independent function that, as we mentioned in section 2, preserves the
same conservation equation. If the field is further restricted to a plane wave, then the average
density in the two formalisms is the same provided that the complementary fields density is
scaled by a factor of (2v2)−1. This factor has not been included in the complementary field
definitions in order to allow for the possibility of dealing with appropriate designations for
a homogeneous medium with dispersion or an inhomogeneous medium without dispersion
(see equation (5) and thereafter). The situation becomes quite different in the presence of
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finite wave-trains. The amplitude time derivatives are increasingly important as the wave
is shortened in time. Furthermore, for very short pulses a coupling of spatial and temporal
effects becomes important even for propagation in a non-dispersive medium [25]. Important
differences are thus expected in the different schemes in the presence of very short pulses even
for the averaged quantities.

6. Conclusions

The conservation equation that arises from the complementary functions procedure has been
interpreted in terms of two complementary or out-of-phase fields where the assessed density
is interchanged between these two fields. This picture corresponds to the physical idea of a
propagating imbalance where there exists an exchange between two forms of energy. The
non-definite density may be understood in terms of which of the fields is the leading or the
lagging field. Nonetheless, a positive definite density implies that the presence of a wave
always leads to an increased density relative to the equilibrium state without waves. However,
a negative local density is not necessarily an unphysical result. Let us speculate that if the
density represents the energy exchange between the two fields, a negative value could be
interpreted in terms of a lower energy density with respect to equilibrium such as a bound
state.

The contribution to the density and flow from two linearly independent solutions has
been shown to stem from the orthogonal functions; any linearly dependent part has no further
contribution to the assessed quantities. The complementary field arising from the linearly
independent solution of the wave equation is readily calculated for one degree of freedom.
However, in the (3+1)-dimensional case, the linearly independent solution cannot be obtained
in a straightforward way. Two possibilities have been explored here: (a) a complementary
field obtained in an amplitude and phase representation that leads to a wave front orthogonal
to the propagating direction, and (b) a complementary field obtained from the derivative of the
reference field solution. The table below summarizes the main results in either scheme.

Density Flow

General form ψρ =
(
ψ1

∂ψ2
∂t

− ψ2
∂ψ1
∂t

)
� ψρ = (ψ2∇ψ1 − ψ1∇ψ2)

Complex rep. ψρ = 1
2i

(
ψ̃∗ ∂ψ̃

∂t
− ψ̃

∂ψ̃∗
∂t

)
� ψρ = 1

2i (ψ̃∇ψ̃∗ − ψ̃∗∇ψ̃)

Orthogonal traj. ψ
(⊥)
ρ = ∓b⊥a2 ∂s

∂t
� ψ

(⊥)
ρ = ±b⊥a2∇s

Derivative field ψ
(DF)
ρ = −ψ2 ∂2 ln ψ

∂t2 � ψ
(DF)
ρ = ψ2∇

(
∂ ln ψ

∂t

)
Derivative field in a2

[(
∂s
∂t

)2 − ∂2 ln a

∂t2 sin2 s − 1
2

∂2s

∂t2 sin(2s)
]

a2
[
− ∂s

∂t
∇s + ∇

(
∂ ln a
∂t

)
sin2 s + 1

2 ∇
(

∂s
∂t

)
sin(2s)

]
a and s vars.

In the general form, the complementary field density and flow are described in terms of
two real linearly independent solutions ψ1, ψ2. Appropriate definitions in terms of a complex
disturbance ψ̃ = ψ1 + iψ2 yield identical results to those obtained with the real solutions. The
complex formalism, although it involves complex conjugate fields, does not entail any sort of
averaging. The quantities evaluated with the generalized out-of-phase complementary field
are adequately represented in amplitude and phase variables. In this orthogonal trajectories
scheme the flow is always perpendicular to the constant phase surfaces. In addition, the density
reduces to a previously known TDHO exact invariant in the one-dimensional limit. On the
other hand, the quantities evaluated with the derivative field formalism may be expressed in
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terms of the wavefunction or amplitude and phase variables. The density defined in this way
is positive definite under restricted circumstances, for example, for a monochromatic wave
or a pulse with Gaussian temporal envelope. The assessed quantities evaluated with the time
derivative complementary field have been compared with the usual scalar field energy and
momentum flow definitions since they both share the same spatial and temporal parities. The
density evaluated with these two procedures is abridged in the following table.

Density Usual scalar field definitions Complementary field

General form Ed = 1
2

1
v2

(
∂ψ
∂t

)2
+ 1

2 ∇ψ · ∇ψ ψ
(DF)
ρ =

(
∂ψ
∂t

)2 − ψ
∂2ψ

∂t2

Complex rep. Ed = 1
2

1
v2

(
∂ψ
∂t

)2
+ 1

2 ∇ψ · ∇ψ ψρ = 1
2i

(
ψ̃∗ ∂ψ̃

∂t
− ψ̃

∂ψ̃∗
∂t

)
Average 〈Ed 〉 1

2
1
v2

∂ψ̃
∂t

∂ψ̃∗
∂t

+ 1
2 ∇ψ̃ · ∇ψ̃∗

Average in a and s vars. 1
4

{
1
v2

[
a2

(
∂s
∂t

)2
+

(
∂a
∂t

)2]
+ a2∇s · ∇s + ∇a · ∇a

} 〈
ψ

(DF)
ρ

〉
= a2

[(
∂s
∂t

)2 − 1
2

∂2 ln a

∂t2

]

The complementary fields density involves the sum of two out-of-phase terms whereas
the usual definitions imply the sum of two in-phase fields as may be seen from the general
form of these two expressions. The average of these quantities in the real amplitude and phase
representation exhibit similar terms although the complementary field density and flow involve
second-order derivative terms. The complementary fields definitions require a constant factor
(2v2)−1 in order to obtain the same results as the usual scalar field quantities for a dispersionless
monochromatic plane wave. In the propagationless harmonic limit, the complementary field
density reduces to the energy of the time-independent harmonic oscillator. In contrast, the
usual definition of the wave energy density does not reduce to an invariant in such a limit (only
its average is equal to the oscillator energy). The flow assessed with the two procedures is
abbreviated in the table below.

Flow Usual definition Complementary field

General form Sd = − ∂ψ
∂t

∇ψ � ψ
(DF)
ρ = ψ∇

(
∂ψ
∂t

)
− ∂ψ

∂t
∇ψ

Complex rep. Sd = − ∂ψ
∂t

∇ψ � ψρ = 1
2i (ψ̃∇ψ̃∗ − ψ̃∗∇ψ̃)

Average 〈Sd 〉 − 1
2

(
∂ψ̃
∂t

∇ψ̃∗ + ∂ψ̃∗
∂t

∇ψ̃
)

Average in a and s vars. − 1
2

(
a2∇s ∂s

∂t
+ ∇a ∂a

∂t

) 〈
� ψ

(DF)
ρ

〉
=

[
−a2∇s ∂s

∂t
− 1

2 ∇a ∂a
∂t

+ 1
2 a∇

(
∂a
∂t

)]

In the monochromatic case, the flow in either scheme is the same provided that the
complementary field flow is scaled by a factor of 1/2. Whether these two alternative definitions
of flow lead to different experimental observations is an issue that requires further discussion.
From the previous analysis it is likely that precise measurements with time-dependent pulses
should exhibit appreciable differences.
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